Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170527, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286285

RESUMO

The global ocean has been receiving massive amounts of plastic wastes. Marine biodegradation, influenced by global climate, naturally breaks down these wastes. In this study, we systematically compared the biodegradation performance of petroleum- and bio-based plastic films, i.e., low-density polyethylene (LDPE), polylactic acid (PLA), and polyhydroxyalkanoates (PHAs) under three ambient temperatures (4, 15, and 22 °C). We deployed the our previously isolated cold-tolerant plastic-degrading Alcanivorax to simulate the accelerated marine biodegradation process and evaluated the alteration of bacterial growth, plastic films, and released degradation products. Notably, we found that marine biodegradation of PHA films enriched more bacterial amounts, induced more conspicuous morphological damage, and released more microplastics (MPs) and dissolved organic carbon (DOC) under all temperatures compared to LDPE and PLA. Particularly, MPs were released from film edges and cracks with a mean size of 2.8 µm under all temperatures. In addition, the degradation products released by biodegradation of PHA under 22 °C induced the highest acute toxicity to Vibrio fischeri. Our results highlighted that: (1) marine biodegradation of plastics would release millions of MPs per cm2 exposed surface area even in cold environments within 60 days; (2) different marine biodegradation scenarios of these plastics may raise disparate impacts and mitigation-related studies.


Assuntos
Alcanivoraceae , Poli-Hidroxialcanoatos , Plásticos/metabolismo , Alcanivoraceae/metabolismo , Polietileno/metabolismo , Temperatura , Biodegradação Ambiental , Bactérias/metabolismo , Microplásticos/metabolismo , Poli-Hidroxialcanoatos/metabolismo
2.
Appl Environ Microbiol ; 89(12): e0136523, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982621

RESUMO

IMPORTANCE: PP biodegradation has not been clearly shown (it has been uncertain whether the PP structure is actually biodegraded or not). This is the first report on the obvious biodegradation of PP. At the same time, this study shows that Alcanivorax bacteria could be major degraders of PP in mesopelagic environments. Moreover, PP biodegradation has been investigated by using solid PP as the sole carbon source. However, this study shows that PP would not be used as a sole carbon and energy source. Our data thus provide very important and key knowledge for PP bioremediation.


Assuntos
Alcanivoraceae , Polipropilenos , Polipropilenos/metabolismo , Alcanivoraceae/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Plásticos/metabolismo
3.
Science ; 381(6659): 748-753, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590351

RESUMO

During the consumption of alkanes, Alcanivorax borkumensis will form a biofilm around an oil droplet, but the role this plays during degradation remains unclear. We identified a shift in biofilm morphology that depends on adaptation to oil consumption: Longer exposure leads to the appearance of dendritic biofilms optimized for oil consumption effected through tubulation of the interface. In situ microfluidic tracking enabled us to correlate tubulation to localized defects in the interfacial cell ordering. We demonstrate control over droplet deformation by using confinement to position defects, inducing dimpling in the droplets. We developed a model that elucidates biofilm morphology, linking tubulation to decreased interfacial tension and increased cell hydrophobicity.


Assuntos
Alcanivoraceae , Alcanos , Biofilmes , Petróleo , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Petróleo/metabolismo , Biodegradação Ambiental
4.
Science ; 381(6659): 728-729, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590354

RESUMO

Microbes reshape oil droplets to speed biodegradation.


Assuntos
Alcanivoraceae , Petróleo , Biodegradação Ambiental , Petróleo/metabolismo , Alcanivoraceae/metabolismo
5.
ISME J ; 17(4): 600-610, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721059

RESUMO

Species within the genus Alcanivorax are well known hydrocarbon-degraders that propagate quickly in oil spills and natural oil seepage. They are also inhabitants of the deep-sea and have been found in several hydrothermal plumes. However, an in-depth analysis of deep-sea Alcanivorax is currently lacking. In this study, we used multiple culture-independent techniques to analyze the microbial community composition of hydrothermal plumes in the Northern Tonga arc and Northeastern Lau Basin focusing on the autecology of Alcanivorax. The hydrothermal vents feeding the plumes are hosted in an arc volcano (Niua), a rear-arc caldera (Niuatahi) and the Northeast Lau Spreading Centre (Maka). Fluorescence in situ hybridization revealed that Alcanivorax dominated the community at two sites (1210-1565 mbsl), reaching up to 48% relative abundance (3.5 × 104 cells/ml). Through 16S rRNA gene and metagenome analyses, we identified that this pattern was driven by two Alcanivorax species in the plumes of Niuatahi and Maka. Despite no indication for hydrocarbon presence in the plumes of these areas, a high expression of genes involved in hydrocarbon-degradation was observed. We hypothesize that the high abundance and gene expression of Alcanivorax is likely due to yet undiscovered hydrocarbon seepage from the seafloor, potentially resulting from recent volcanic activity in the area. Chain-length and complexity of hydrocarbons, and water depth could be driving niche partitioning in Alcanivorax.


Assuntos
Alcanivoraceae , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Oceano Pacífico , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Hidrocarbonetos/metabolismo , Filogenia , Água do Mar
6.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555635

RESUMO

Alkanes are widespread in the ocean, and Alcanivorax is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species Alcanivorax dieselolei B-5 under alkane (n-hexadecane) and non-alkane (acetate) conditions. As a result, we identified 549 sRNA candidates at single-nucleotide resolution of 5'-ends, 63.4% of which are with transcription start sites (TSSs), and 36.6% of which are with processing sites (PSSs) at the 5'-ends. These sRNAs originate from almost any location in the genome, regardless of intragenic (65.8%), antisense (20.6%) and intergenic (6.2%) regions, and RNase E may function in the maturation of sRNAs. Most sRNAs locally distribute across the 15 reference genomes of Alcanivorax, and only 7.5% of sRNAs are broadly conserved in this genus. Expression responses to the alkane of several core conserved sRNAs, including 6S RNA, M1 RNA and tmRNA, indicate that they may participate in alkane metabolisms and result in more actively global transcription, RNA processing and stresses mitigation. Two novel CsrA-related sRNAs are identified, which may be involved in the translational activation of alkane metabolism-related genes by sequestering the global repressor CsrA. The relationships of sRNAs with the characterized genes of alkane sensing (ompS), chemotaxis (mcp, cheR, cheW2), transporting (ompT1, ompT2, ompT3) and hydroxylation (alkB1, alkB2, almA) were created based on the genome-wide predicted sRNA-mRNA interactions. Overall, the sRNA landscape lays the ground for uncovering cryptic regulations in critical marine bacterium, among which both the core and species-specific sRNAs are implicated in the alkane adaptive metabolisms.


Assuntos
Alcanivoraceae , Pequeno RNA não Traduzido , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Ecossistema , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Sequência de Bases , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
Environ Pollut ; 313: 120177, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116568

RESUMO

Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.


Assuntos
Alcanivoraceae , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Oceano Atlântico , Biodegradação Ambiental , Carbono/metabolismo , Citocromo P-450 CYP4A , Ecossistema , Hidrocarbonetos/análise , Plásticos/metabolismo
8.
Appl Environ Microbiol ; 88(16): e0112622, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938787

RESUMO

The marine bacterium Alcanivorax borkumensis produces a surface-active glycine-glucolipid during growth with long-chain alkanes. A high-performance liquid chromatography (HPLC) method was developed for absolute quantification. This method is based on the conversion of the glycine-glucolipid to phenacyl esters with subsequent measurement by HPLC with diode array detection (HPLC-DAD). Different molecular species were separated by HPLC and identified as glucosyl-tetra(3-hydroxy-acyl)-glycine with varying numbers of 3-hydroxy-decanoic acid or 3-hydroxy-octanoic acid groups via mass spectrometry. The growth rate of A. borkumensis cells with pyruvate as the sole carbon source was elevated compared to hexadecane as recorded by the increase in cell density as well as oxygen/carbon dioxide transfer rates. The amount of the glycine-glucolipid produced per cell during growth on hexadecane was higher compared with growth on pyruvate. The glycine-glucolipid from pyruvate-grown cells contained considerable amounts of 3-hydroxy-octanoic acid, in contrast to hexadecane-grown cells, which almost exclusively incorporated 3-hydroxy-decanoic acid into the glycine-glucolipid. The predominant proportion of the glycine-glucolipid was found in the cell pellet, while only minute amounts were present in the cell-free supernatant. The glycine-glucolipid isolated from the bacterial cell broth, cell pellet, or cell-free supernatant showed the same structure containing a glycine residue, in contrast to previous reports, which suggested that a glycine-free form of the glucolipid exists which is secreted into the supernatant. In conclusion, the glycine-glucolipid of A. borkumensis is resident to the cell wall and enables the bacterium to bind and solubilize alkanes at the lipid-water interface. IMPORTANCE Alcanivorax borkumensis is one of the most abundant marine bacteria found in areas of oil spills, where it degrades alkanes. The production of a glycine-glucolipid is considered an essential element for alkane degradation. We developed a quantitative method and determined the structure of the A. borkumensis glycine-glucolipid in different fractions of the cultures after growth in various media. Our results show that the amount of the glycine-glucolipid in the cells by far exceeds the amount measured in the supernatant, confirming the proposed cell wall localization. These results support the scenario that the surface hydrophobicity of A. borkumensis cells increases by producing the glycine-glucolipid, allowing the cells to attach to the alkane-water interface and form a biofilm. We found no evidence for a glycine-free form of the glucolipid.


Assuntos
Alcanivoraceae , Glicina , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Parede Celular/metabolismo , Glicina/metabolismo , Ácido Pirúvico/metabolismo , Água/metabolismo
9.
J Hazard Mater ; 436: 129278, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739790

RESUMO

Polyethylene (PE) is one of the most recalcitrant carbon-based synthetic materials produced and, currently, the most ubiquitous plastic pollutant found in nature. Over time, combined abiotic and biotic processes are thought to eventually breakdown PE. Despite limited evidence of biological PE degradation and speculation that hydrocarbon-degrading bacteria found within the plastisphere is an indication of biodegradation, there is no clear mechanistic understanding of the process. Here, using high-throughput proteomics, we investigated the molecular processes that take place in the hydrocarbon-degrading marine bacterium Alcanivorax sp. 24 when grown in the presence of low density PE (LDPE). As well as efficiently utilising and assimilating the leachate of weathered LDPE, the bacterium was able to reduce the molecular weight distribution (Mw from 122 to 83 kg/mol) and overall mass of pristine LDPE films (0.9 % after 34 days of incubation). Most interestingly, Alcanivorax acquired the isotopic signature of the pristine plastic and induced an extensive array of metabolic pathways for aliphatic compound degradation. Presumably, the primary biodegradation of LDPE by Alcanivorax sp. 24 is possible via the production of extracellular reactive oxygen species as observed both by the material's surface oxidation and the measurement of superoxide in the culture with LDPE. Our findings confirm that hydrocarbon-biodegrading bacteria within the plastisphere may in fact have a role in degrading PE.


Assuntos
Alcanivoraceae , Alcanivoraceae/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo
10.
Genomics ; 112(5): 3268-3273, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553480

RESUMO

A new Alcanivorax sp. VBW004 was isolated from a shallow hydrothermal vent in Azores Island, Portugal. In this study, we determined VBW004 was resistant to copper. This strain showed maximum tolerance of copper concentrations up to 600 µg/mL. Based on 16S rRNA gene sequencing and phylogeny revealed that this strain was more closely related to Alcanivorax borkumensis SK2. We sequenced the genome of this strain that consist of 3.8 Mb size with a G + C content of 58.4 %. In addition, digital DNA-DNA hybridizations (dDDH) and the average nucleotide identities (ANI) analysis between Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9 revealed that Alcanivorax sp. VBW004 belongs to new species. Functional annotation revealed that the genome acquired multiple copper resistance encoding genes that could assist VBW004 to respond to high Cu toxicity. Our results from biosorption analysis presumed that the VBW004 is an ecologically important bacterium that could be useful for copper bioremediation.


Assuntos
Alcanivoraceae/metabolismo , Cobre/metabolismo , Fontes Hidrotermais/microbiologia , Alcanivoraceae/classificação , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Açores , Genoma Bacteriano , Genômica , Anotação de Sequência Molecular , Filogenia
11.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053975

RESUMO

The environmental accumulation of plastics worldwide is a consequence of the durability of the material. Alternative polymers, marketed as biodegradable, present a potential solution to mitigate their ecological damage. However, understanding of biodegradability has been hindered by a lack of reproducible testing methods. We developed a novel method to evaluate the biodegradability of plastic samples based on the monitoring of bacterial respiration in aqueous media via the quantification of CO2 produced, where the only carbon source available is from the polymer. Rhodococcus rhodochrous and Alcanivorax borkumensis were used as model organisms for soil and marine systems, respectively. Our results demonstrate that this approach is reproducible and can be used with a variety of plastics, allowing comparison of the relative biodegradability of the different materials. In the case of low-density polyethylene, the study demonstrated a clear correlation between the molecular weight of the sample and CO2 released, taken as a measure of biodegradability.


Assuntos
Alcanivoraceae/metabolismo , Dióxido de Carbono/metabolismo , Poluentes Ambientais/metabolismo , Plásticos/metabolismo , Rhodococcus/metabolismo , Biodegradação Ambiental , Monitoramento Ambiental/métodos , Polietileno/metabolismo , Eliminação de Resíduos
12.
Environ Microbiol ; 22(4): 1356-1369, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32079039

RESUMO

Pristine marine environments are highly oligotrophic ecosystems populated by well-established specialized microbial communities. Nevertheless, during oil spills, low-abundant hydrocarbonoclastic bacteria bloom and rapidly prevail over the marine microbiota. The genus Alcanivorax is one of the most abundant and well-studied organisms for oil degradation. While highly successful under polluted conditions due to its specialized oil-degrading metabolism, it is unknown how they persist in these environments during pristine conditions. Here, we show that part of the Alcanivorax genus, as well as oils, has an enormous potential for biodegrading aliphatic polyesters thanks to a unique and abundantly secreted alpha/beta hydrolase. The heterologous overexpression of this esterase proved a remarkable ability to hydrolyse both natural and synthetic polyesters. Our findings contribute to (i) better understand the ecology of Alcanivorax in its natural environment, where natural polyesters such as polyhydroxyalkanoates (PHA) are produced by a large fraction of the community and, hence, an accessible source of carbon and energy used by the organism in order to persist, (ii) highlight the potential of Alcanivorax to clear marine environments from polyester materials of anthropogenic origin as well as oils, and (iii) the discovery of a new versatile esterase with a high biotechnological potential.


Assuntos
Alcanivoraceae/enzimologia , Biodegradação Ambiental , Óleos/metabolismo , Alcanivoraceae/classificação , Alcanivoraceae/metabolismo , Biotecnologia , Ecossistema , Poluição por Petróleo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/metabolismo
13.
J Hazard Mater ; 380: 120899, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326835

RESUMO

Most plastics are released to the environment in landfills and around 32% end up in the sea, inducing large ecological and health impacts. The plastics constitute a physical substrate and potential carbon source for microorganisms. The present study compares the structures of bacterial communities from floating plastics, sediment-associated plastics and sediments from the Mediterranean Sea. The 16S rRNA microbiome profiles of surface and sediment plastic-associated microbial biofilms from the same geographic location differ significantly, with the omnipresence of Bacteroidetes and Gammaproteobacteria. Our research confirmed that plastisphere hosts microbial communities were environmental distinct niche. In parallel, this study used environmental samples to investigate the enrichment of potential plastic-degrading bacteria with Low Density PolyEthylene (LDPE), PolyEthylene Terephthalate (PET) and PolyStyrene (PS) plastics as the sole carbon source. In this context, we showed that the bacterial community composition is clearly plastic nature dependent. Hydrocarbon-degrading bacteria such as Alcanivorax, Marinobacter and Arenibacter genera are enriched with LDPE and PET, implying that these bacteria are potential players in plastic degradation. Finally, our data showed for the first time the ability of Alcanivorax borkumensis to form thick biofilms specifically on LDPE and to degrade this petroleum-based plastic.


Assuntos
Alcanivoraceae/metabolismo , Ecossistema , Plásticos , Polietileno/metabolismo , Água do Mar/microbiologia , Biodegradação Ambiental
14.
Environ Microbiol ; 21(7): 2347-2359, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951249

RESUMO

Alcanivorax borkumensis SK2T is an important obligate hydrocarbonoclastic bacterium (OHCB) that can dominate microbial communities following marine oil spills. It possesses the ability to degrade branched alkanes which provides it a competitive advantage over many other marine alkane degraders that can only degrade linear alkanes. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on linear (n-C14 ) or branched (pristane) alkanes. During growth on n-C14 , A. borkumensis expressed a complete pathway for the terminal oxidation of n-alkanes to their corresponding acyl-CoA derivatives including AlkB and AlmA, two CYP153 cytochrome P450s, an alcohol dehydrogenase and an aldehyde dehydrogenase. In contrast, during growth on pristane, an alternative alkane degradation pathway was expressed including a different cytochrome P450, an alcohol oxidase and an alcohol dehydrogenase. A. borkumensis also expressed a different set of enzymes for ß-oxidation of the resultant fatty acids depending on the growth substrate utilized. This study significantly enhances our understanding of the fundamental physiology of A. borkumensis SK2T by identifying the key enzymes expressed and involved in terminal oxidation of both linear and branched alkanes. It has also highlights the differential expression of sets of ß-oxidation proteins to overcome steric hinderance from branched substrates.


Assuntos
Alcanivoraceae/enzimologia , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Alcanivoraceae/crescimento & desenvolvimento , Álcool Desidrogenase/genética , Oxirredutases do Álcool/genética , Biodegradação Ambiental , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/genética , Ácidos Graxos/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Terpenos/metabolismo
15.
Microbes Environ ; 34(1): 104-107, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30773505

RESUMO

Alcanivorax borkumensis is a ubiquitous marine bacterium that utilizes alkanes as a sole carbon source. We observed two phenotypes in the A. borkumensis SK2 type strain: rough (R) and smooth (S) types. The S type exhibited lower motility and higher polysaccharide production than the R type. Full genome sequencing revealed a mutation in the S type involved in cyclic-di-GMP production. The present results suggest that higher c-di-GMP levels in the S type control the biofilm forming behavior of this bacterium in a manner commensurate with other Gram-negative bacteria.


Assuntos
Alcanivoraceae/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Fenótipo , Mutação Puntual , Polissacarídeos Bacterianos/biossíntese
16.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446553

RESUMO

In subduction zones, serpentinization and biological processes may release alkanes to the deep waters, which would probably result in the rapid spread of Alcanivorax However, the timing and area of the alkane distribution and associated enrichment of alkane-degrading microbes in the dark world of the deep ocean have not been explored. In this study, we report the richness (up to 17.8%) of alkane-degrading bacteria, represented by Alcanivorax jadensis, in deep water samples obtained at 3,000 to 6,000 m in the Mariana Trench in two cruises. The relative abundance of A. jadensis correlated with copy numbers of functional almA and alkB genes, which are involved in alkane degradation. In these water samples, we detected a high flux of alkanes, which probably resulted in the prevalence of A. jadensis in the deep waters. Contigs of A. jadensis were binned from the metagenomes for examination of alkane degradation pathways and deep sea-specific pathways, which revealed a lack of nitrate and nitrite dissimilatory reduction in our A. jadensis strains. Comparing the results for the two cruises conducted close to each other, we suggest periodic release of alkanes that may spread widely but periodically in the trench. Distribution of alkane-degrading bacteria in the world's oceans suggests the periodic and remarkable contributions of Alcanivorax to the deep sea organic carbon and nitrogen sources.IMPORTANCE In the oligotrophic environment of the Mariana Trench, alkanes as carbohydrates are important for the ecosystem, but their spatial and periodic spreading in deep waters has never been reported. Alkane-degrading bacteria such as Alcanivorax spp. are biological signals of the alkane distribution. In the present study, Alcanivorax was abundant in some waters, at depths of up to 6,000 m, in the Mariana Trench. Genomic, transcriptomic, and chemical analyses provide evidence for the presence and activities of Alcanivorax jadensis in deep sea zones. The periodic spreading of alkanes, probably from the subductive plates, might have fundamentally modified the local microbial communities, as well as perhaps the deep sea microenvironment.


Assuntos
Alcanivoraceae/metabolismo , Alcanos/metabolismo , Água do Mar/microbiologia , Alcanivoraceae/classificação , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Alcanos/análise , Biodegradação Ambiental , Ecossistema , Nitratos/metabolismo , Nitritos/metabolismo , Filogenia , Água do Mar/química
17.
Sci Rep ; 6: 31316, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27515484

RESUMO

Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises the hypothesis that it may lack adaptive mechanisms to hydrostatic pressure (HP). The type strain SK2 was tested under 0.1, 5 and 10 MPa (corresponding to surface water, 500 and 1000 m depth, respectively). While 5 MPa essentially inactivated SK2, further increase to 10 MPa triggered some resistance mechanism, as indicated by higher total and intact cell numbers. Under 10 MPa, SK2 upregulated the synthetic pathway of the osmolyte ectoine, whose concentration increased from 0.45 to 4.71 fmoles cell(-1). Central biosynthetic pathways such as cell replication, glyoxylate and Krebs cycles, amino acids metabolism and fatty acids biosynthesis, but not ß-oxidation, were upregulated or unaffected at 10 MPa, although total cell number was remarkably lower with respect to 0.1 MPa. Concomitantly, expression of more than 50% of SK2 genes was downregulated, including genes related to ATP generation, respiration and protein translation. Thus, A. borkumensis lacks proper adaptation to HP but activates resistance mechanisms. These consist in poorly efficient biosynthetic rather than energy-yielding degradation-related pathways, and suggest that HP does represent a major driver for its distribution at deep-sea.


Assuntos
Alcanivoraceae/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/métodos , Alcanivoraceae/metabolismo , Diamino Aminoácidos/biossíntese , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Pressão Hidrostática , Água do Mar/microbiologia , Microbiologia da Água
18.
Mar Pollut Bull ; 110(1): 378-382, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27315756

RESUMO

This study aimed to develop a new assay based on the whole cell hybridization in order to monitor alkane hydroxylase genes (alkB system) of the marine bacterium Alcanivorax borkumensis SK2(T) commonly reported as the predominant microorganism responsible for the biodegradation of n-alkanes which are the major fraction of petroleum hydrocarbons. The assay based on the whole cell hybridization targeting alkB2 gene was successfully developed and calibrated on a pure culture of Alcanivorax borkumensis SK2(T) with a detection efficiency up to 80%. The approach was further successfully validated on hydrocarbon-contaminated seawater and provided cells abundance (6.74E+04alkB2-carryingcellsmL(-1)) higher of about one order of magnitude than those obtained by qPCR (4.96E+03alkB2genecopiesmL(-1)). This study highlights the validity of the assay for the detection at single cell level of key-functional genes involved in the biodegradation of n-alkanes.


Assuntos
Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Citocromo P-450 CYP4A/genética , Hidrocarbonetos/metabolismo , Água do Mar/microbiologia , Alcanos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Citocromo P-450 CYP4A/metabolismo , Hibridização in Situ Fluorescente , Itália , Petróleo/metabolismo , Reprodutibilidade dos Testes , Poluentes Químicos da Água/metabolismo
19.
Langmuir ; 32(47): 12552-12558, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27280755

RESUMO

The modified polyelectrolyte-magnetite nanocoating was applied to functionalize the cell walls of oil decomposing bacteria Alcanivorax borkumensis. Cationic coacervate of poly(allylamine) and 20 nm iron oxide nanoparticles allowed for a rapid single-step encapsulation process exploiting electrostatic interaction with bacteria surfaces. The bacteria were covered with rough 70-100-nm-thick shells of magnetite loosely bound to the surface through polycations. This encapsulation allowed for external manipulations of A. borkumensis with magnetic field, as demonstrated by magnetically facilitated cell displacement on the agar substrate. Magnetic coating was naturally removed after multiple cell proliferations providing next generations of the cell in the native nonmagnetic form. The discharged biosurfactant vesicles indicating the bacterial functionality (150 ± 50 nm lipid micelles) were visualized with atomic force microscopy in the bacterial biofilms.


Assuntos
Alcanivoraceae/química , Magnetismo , Nanoconchas , Adsorção , Ágar , Alcanivoraceae/metabolismo , Ânions , Biofilmes , Cátions , Membrana Celular/metabolismo , Parede Celular , Eletrólitos , Óxido Ferroso-Férrico , Hidrodinâmica , Microscopia de Força Atômica , Poliaminas , Polieletrólitos , Eletricidade Estática , Propriedades de Superfície
20.
Sci Rep ; 6: 23526, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27020120

RESUMO

Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO4(3-) uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.


Assuntos
Bactérias/metabolismo , Pressão Hidrostática , Poluição por Petróleo , Petróleo/metabolismo , Alcanivoraceae/classificação , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Ecossistema , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Redes e Vias Metabólicas/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Água do Mar/microbiologia , Especificidade da Espécie , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...